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Abstract

In this paper we study the optimal discretionary monetary policy under partial infor-

mation (PI) where the central bank can only extract information from an endogenous

signal, price inflation. The signal is determined in equilibrium by the policy rate and

the unobserved supply and demand shocks. We solve for optimal policy in a non-linear

model where the Phillips curve is bent by asymmetric wage adjustment costs and the

“certainty equivalence” principal that prevails in linear models cannot be applied. Op-

timal policy prescribes that the central bank should raise the interest rate gradually

when price inflation is low but respond strongly when it is high. This non-linearity

arises because signal extraction interacts differently with optimal policy depending on

the price inflation observed.
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1 Introduction

In the recent studies of monetary policy, simple policy rules such as Taylor rules could

achieve good results in simulated small macroeconomic models. At the same time, many

empirical studies report that the policy specifications of this kind fit the actual behavior of

the central banks in several countries.

But the central banks actually face much more complicated situation compared with the

set-ups in the model. In particular, they do not know the underlying state of the economy

in real time but only infer it from limited data set. This poses a challenge to the central

bank, the information constraint. This challenge is twofold: how easy it is to get the relevant

data and how accurate the indicators could reflect the fundamentals of the economy. For

example, the central bank can only have very preliminary measure of current period GDP

and update it at least one period later. Another key indicator for monetary policy, wage

inflation, is difficult to observe because it is kept within employees and firms while the central

bank can only rely on the survey data which is subject to large measurement error. Even

though some indicators are much easier to get with accuracy, the central bank may still

face great uncertainty when making monetary policy. A typical example is price inflation,

which can be driven by a high demand shock or by a supply shortage or a combination of

both. Different causes needs to be treated differently. The haziness would not disappear

even though the central bank knows the price inflation perfectly. So the typical presumption

in the macroeconomic models that policymakers know the state of the system at a point in

time generally does not hold in policy field, policy decisions need to be made under partial

information (PI) instead of full information (FI).

Apart from information barriers mentioned above, the central bank also needs to take

into account that the signals it observes are endogenous to the policy rule. Indicators like

inflation, output are determined not only by the fundamentals in the economy, but also by

the monetary policy the central bank adopts. So the policy optimization and the signal

extraction need to be solved simultaneously.
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To our knowledge, all existing results in the literature on optimal monetary policy with

PI circumvent this technical issue of simultaneity by introducing timing assumptions such

that signal extraction and policy optimization can be solved separately. While this literature

has led to many interesting applications, it can say nothing about how policy optimization

and signal extraction interact with each other. What is emphasized in the literature is pol-

icy optimization under PI or uncertainty but what is missing is how policy choice affects

the uncertainty the central bank faces. Svensson and Woodford (2004) address this simul-

taneity problem in linear model and develop a method called “certainty equivalence”, which

allow them to solve the signal extraction and optimal choice problems sequentially. But

their method cannot be applied to many important non-linear scenarios in monetary policy

analysis, such as zero lower bound, models with financial frictions etc.

In this paper, we focus on the non-linearity of new Keynessian Phillips curve, the substan-

tial curvature in the relationship between money wage growth and unemployment. Phillips

(1958) conjectures that this curvature owed to the fact that “... workers are reluctant to

offer their services at less than prevailing rates when the demand for labour is low and un-

employment is high so that wage rates fall only very slowly.” As is supported empirically

and modelled theoretically in the literature, We study the optimal discretionary monetary

policy with signal extraction in such an economy where the Phillips curve is bent by the

asymmetric wage adjustment cost. To the best of our knowledge, we are the first to study

the optimal monetary policy with signal extraction in non-linear models.

To make the model more transparent and tractable, we assume the only nominal rigidity

is asymmetric wage adjustment cost. When the central bank has full information on the

economy, the optimal policy calls for strict wage inflation targeting and full stabilization of

demand shocks. We introduce the information constraint through an identification problem:

every period the economy is hit by two exogenous shocks, the supply and demand shocks,

but the central bank can only infer the state of the economy from one single indicator,

price inflation. We find that the responding rule of nominal rate to price inflation is quite
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non-linear: the central bank should raise the nominal rate gradually when price inflation is

low but raise it sharply when price inflation is high. We argue that this non-linearity arises

because the signal extraction problem interacts differently with optimal monetary policy

depending the range of price inflation. In particular, the sluggish adjustment around the low

realization of price inflation is justified by the strong real effects of monetary policy as small

change of policy rate can make great influence on output. The inertial behaviour in the

intermediate range of price inflation can be seen as policy cautiousness as the central bank

faces more uncertainty in this regime. The strong response to high levels of price inflation

is a choice under less uncertainty and the fading real effects of monetary policy.

Our model provides a plausible explanation of the Fed’s monetary policy after COVID-

19. When the inflation rate is below 3 per cent, the Fed was not sure about the cause of

inflation, a supply shock or a demand shock. So it should move cautiously in such haziness.

On top of that, the Fed also believes that the monetary policy is very powerful in inflation

controlling as the Phillips curve is flat in this interval. But after January 2022, the inflation

rate grew even higher, the Fed is more certain about the true cause behind it, the demand

shock, so it raised the interest rates without hesitation, considering also the steep Phillips

curve in this interval.

To highlight our contribution relative to the literature, we compare our results with some

alternative policy choices and show that the endogeneity of the signal and the non-linearity

of the wage Phillips curve bent by asymmetric wage adjustment cost are vital in monetary

policy making and ignoring that could lead to great welfare loss.

The remainder of the paper is organized as follows. We discuss the related literature

in Section 2. Section 3 introduces our main model and the solution under full information.

In Section 4 we present the result and interpretation of the optimal monetary policy under

partial information. Section 7 compares the optimal policy with some alternative policy

rules and their welfare implications. For completeness, we present the solution for the case

of serial correlated shocks in Section 8. Section 9 concludes.
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Figure 1: U.S. Inflation and Policy Rates

2 Literature Review

Optimal monetary policy with signal extraction is often considered in linear models:

Svensson and Woodford (2004) shows that in the case of a linear economic model with a

quadratic welfare loss function, a principle of “certainty equivalence” applies: the government

applies the policy under full information to its best estimate of the state of the economy.

Aoki (2003) applies their results to optimal monetary policy with noisy indicators on output

and inflation. Nimark (2008b) applies them to a problem of monetary policy where the

central bank uses data from the yield curve knowing that the chosen policy affects the very

same data. Relatedly, Morris and Shin (2018) analyze the optimal weight on an endogenous

signal in a linear policy rule.

But “certainty equivalence” cannot be applied to study the optimal monetary policy un-

der partial information when the economy features some important non-linear relationships,

a typical example of which is the substantial curvature in the relationship between money
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wage growth and unemployment. As documented by Phillips (1958), the curve is nearly

vertical at high inflation and flattens out at low inflation, implying progressively larger out-

put costs of reducing inflation. He conjectures that this curvature owed to the fact that “...

workers are reluctant to offer their services at less than prevailing rates when the demand

for Labour is low and unemployment is high so that wage rates fall only very slowly.” The

empirical evidence of downward nominal wage rigidity is provided in Akerlof et al. (1996)

and Daly and Hobijn (2014). Kim and Ruge-Murcia (2009) and Benigno and Ricci (2014)

study the optimal monetary policy in a dynamic stochastic general equilibrium model and

find that the optimal inflation rate is positive. Fahr and Smets (2011) consider both nominal

and real downward wage rigidity (DWR) in a monetary union and find that optimal grease

inflation may be dampened by heterogeneity in the types of DWR in different regions.

We revisit Phillips’ hypothesis that downward nominal wage rigidities bend the Phillips

curve and consider how this non-linearity interacts with signal extraction under partial in-

formation. To the best of our knowledge, our paper is the first one to consider the optimal

monetary policy with signal extraction in a non-linear model. The solution method to our

model is based on the work of Hauk, Lanteri & Marcet (2021, HLM hereafter), which address

the optimal fiscal policy with signal extraction problem from the first principal.

3 The structure of the economy

The model developed in this section is a small-scale, dynamic stochastic general equilib-

rium model with downward nominal wage rigidity.

3.1 Firms

Firms operate in a perfectly competitive goods market and produce output using the

production function

Yt = AtNt (1)
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Here At is average labor productivity, which evolves exogenously. The labor aggregate, Nt,

is a Dixit–Stiglitz(1977) aggregate over a continuum of labor types j ∈ [0, 1] and is of the

form

Nt =

(∫ 1

0

Nt(j)
1− 1

ϵ dj

) ϵ
ϵ−1

(2)

where Nt(j) is the quantity of type-j labor employed by the firm in period t. The parameter

ϵ represents the elasticity of substitution among labor varieties.

LetWt(j) denote the nominal wage for type-j labor prevailing in period t, for all j ∈ [0, 1].

As discussed below, nominal wages are set by workers of each type(or a union representing

them) and taken as given by firms. Given the wages effective each period for different types

of labor services, cost minimization by the firm yields the demand for each type of workers,

given the firm’s total employment Nt

Nt(j) =

(
Wt(j)

Wt

)−ϵ

Nt (3)

where

Wt =

(∫ 1

0

Wt(j)
1−ϵdj

) 1
1−ϵ

(4)

is an aggregate wage index. Because firms operate in a perfectly competitive goods market,

they set the goods price Pt equal to the marginal production cost,

Pt =
Wt

At
(5)

which yields the relationship between price inflation and wage inflation:

Πp
t = Πw

t

At−1

At
(6)

where Πp
t+1 =

Pt+1

Pt
and Πw

t = Wt+1

Wt
denotes price inflation and wage inflation respectively.
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3.2 Households

The economy is populated by a large number of identical households. Each household is

made up of a continuum of infinitely-lived members specializing in a different labor service

and indexed by j ∈ [0, 1]. Income is pooled within each household, which acts as risk

sharing mechanism. The representative household chooses its path of consumption {Ct}∞t=0

and wages and labor supply {Wt(j), Nt(j)}∞t=0 to maximize

E0

∞∑
t=0

βtU(Ct, Nt;Zt) (7)

and the utility function is defined by

U(Ct, Nt;Zt) = Zt

(
lnCt −

χ

η + 1

∫ 1

0

Nt(j)
η+1dj

)
(8)

where χ ≥ 0 and η ≥ 0 determine the dis-utility of labor supply. Et is the expectation oper-

ator conditional on information at time t. β ∈ (0, 1) is the discount factor. The preference

shock Zt shifts overall utility level and disturbs the household’s inter-temporal substitution

of consumption. Households maximization problem is subject to a sequence of flow budget

constraints, expressed in real terms as

Ct +
Bt

Pt
≤

∫ 1

0

(1 + τ)Wt(j)Nt(j)

Pt
dj −

∫ 1

0

Φ(
Wt(j)

Wt−1(j)
)djNt +

1 + it−1

Pt
Bt−1 + Tt (9)

where Bt represents the quantity of one-period nominal riskless bonds purchased in period

t and maturing in period t + 1. The nominal interest paid during period t on the bonds

held at the end of period t − 1 is it−1. τ is an employment subsidy financed by means of

lump-sum tax Tt that corrects the distortions caused by monopolistic competition in labor

markets. τ is set to be equal to 1
ϵ−1

so that the marginal rate of substitution between leisure

and consumption equals to the real wage under flexible wage setting.

As monopolistic competitors, households choose their wage and labor supply taking as
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given the firm’s demand for their labor type. Labor market frictions induce a cost in the

adjustment of nominal wages. We assume the wage adjustment cost takes the form of an

altered linex cost function similar to Varian (1974):

Φ(
Wt(j)

Wt−1(j)
) =

ϕ− 1

2
(
Wt(j)

Wt−1(j)
− 1)2 +

exp(−ψ( Wt(j)
Wt−1(j)

− 1)) + ψ( Wt(j)
Wt−1(j)

− 1)− 1

ψ2
(10)

The parameter ϕ determines the degree of convexity and ψ the degree of asymmetry in

adjustment costs around zero wage inflation(Wt/Wt−1=1). When ψ > 0, adjustment costs

for nominal wage increases are smaller than those for nominal wage cuts of the same size,

capturing asymmetries in nominal wage adjustments. The specification nests a quadratic

function, limψ→0Φ(
Wt(j)
Wt−1(j)

) = ϕ
2
( Wt(j)
Wt−1(j)

− 1)2. Figure 2 gives a visual impression of a sym-

metric and asymmetric adjustment cost function. To simplify computations, we further

Figure 2: Adjustment cost functions

assume the labor adjustment cost is proportional to the aggregate employment Nt, instead

of
∫ 1

0
Φ( Wt(j)

Wt−1(j)
)Nt(j)dj. The households utility maximization yields the following optimality

conditions:

Zt
Ct

= βEt
Zt+1(1 + it)

Πp
t+1Ct+1

(11)
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ϵχ(η + 1)ZtNt(j)

Wt(j)
+
(1 + τ)(1− ϵ)Zt

Ct
−
ZtΦ

′( Wt(j)
Wt−1(j)

)Nt

CtWt−1(j)
+βEt

Zt+1Φ
′(Wt+1(j)

Wt(j)
)Nt+1Wt+1(j)

Ct+1W 2
t

= 0

(12)

3.3 Symmetric Equilibrium

The model incorporates multiplicity of equilibria and we pick up the symmetric case,

where all households supply exactly the same amount of labor and demand the same level

of nominal wage, i.e. Wt(j) = Wt and Nt(j) = Nt. Dropping the index j, the households

optimality condition yields

ϵχZtN
η
t +

(1 + τ)(1− ϵ)WtZt
PtCt

− ZtΦ
′(Πw

t )Π
w
t

Ct
+ βEt

Zt+1Φ
′(Πw

t+1)Π
w
t+1Nt+1

Ct+1Nt

= 0 (13)

The economy-wide resource constraint is

Ct = (At − Φ(Πw
t ))Nt (14)

Combining them with Pt =
Wt

At
, one can get the wage Phillips Curve of the economy:

ϵχZtC
2
t

[At − Φ(Πw
t )]

2
+

(1 + τ)(1− ϵ)AtZt
At − Φ(Πw

t )
− ZtΦ

′(Πw
t )Π

w
t

At − Φ(Πw
t )

+ βEt
Zt+1Φ

′(Πw
t+1)Π

w
t+1

At+1 − Φ(Πw
t+1)

= 0 (15)

To illustrate how the downward nominal wage rigidity bends the Phillips curve, we plot the

Phillips curve with different wage adjustment costs in the same figure. The point of zero

inflation Πw = 1 marked in Figure 3 represents the natural level of output and inflation. One

can find that there is substantial curvature in the Phillips curve associated with asymmetric

adjustment cost and it would be misleading to log linerize the model.
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Figure 3: Wage Phillips Curve

3.4 Optimal discretionary monetary policy under full information

We consider the optimal monetary policy under discretion. In this case, the central bank

cannot commit itself to any future action. The expectations in the Euler equation and the

wage Phillips curve is taken as given by the monetary authority and will become a constant

in equilibrium. We denote them as E and F respectively. Without loss of generality, we set

At−1 and Zt−1 equal to their steady state value 1. One can write the Euler equation and the

wage Phillips curve as:

AtZt
Ct

= β(1 + it)E (16)

ϵχZtC
2
t

[At − Φ(Πw
t )]

2
+

(1 + τ)(1− ϵ)AtZt
At − Φ(Πw

t )
− ZtΦ

′(Πw
t )Π

w
t

At − Φ(Πw
t )

+ βF = 0 (17)

Under this assumption the central bank’s problem (18) becomes sequential optimization.

max
{it,Ct,Nt,Πw

t }
U(Ct, Nt;Zt) (18)

s.t. (14), (16), (17)

choose the nominal interest rate it to maximize the household’s utility, subject to the re-
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sources constraint, the dynamics IS curve and the wage Phillips curve.

The Lagrangian representation of the Ramsey problem is

L =U(Ct, Nt) + λt(Ct − (At − Φ(πwt ))Nt)

+ µt(β(1 + it)ECt − AtZt)

+ νt(ϵχZtC
2
t + (1 + τ)(1− ϵ)AtZt(At − Φ(Πw

t ))− ZtΦ′(Πw
t )Π

w
t (At − Φ(Πw

t )) + βF (At − Φ(Πw
t ))

2)

(19)

The first order necessary conditions associated with it is:

µtβECt = 0 (20)

and it is evident that µt = 0. The intuition is that the central bank can always choose an

interest rate level consistent with the Euler equation, in the absence of zero lower bound.

The F.O.Cs associated with Ct,Πt, Nt are:

[Ct] : UC + λt + 2νtϵχZtCt = 0 (21)

[Nt] : UN − λtΦ(Πw
t ) = 0 (22)

[Πw
t ] :− λtNtΦ

′(Πw
t )− νt[(1 + τ)(1− ϵ)AtZtΦ′(Πw

t )

− ZtΦ′(Πw
t )(1 + Πw

t )(At − Φ(Πw
t )) + ZtΠ

w
t Φ

′(Πw
t )

2 − βFZtΦ′(Πw
t )(At − Φ(Πw

t ))] = 0

(23)

These three F.O.Cs together with the resources constraint and the Phillips curve characterize

the solution Ct, Nt,Π
w
t , νt, λt and the nominal rate can be solved from the Euler Equation.

When the distortions caused by monopolistic competition is corrected through an employ-

ment subsidy, one cannot do better than to set Πw
t = 1 and it =

Zt

β
− 1 so that there are no

losses to wage adjustment and the economy achieves its first best.
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4 Optimal discretionary policy with signal extraction

The implementation of the optimal monetary policy requires the central bank to have

accurate measure of demand shock or the wage inflation. But the former one cannot be

observed directly from the data and the latter one can only rely on survey data, which

is subject to large measurement error. Prices are public data and the central bank have

much easier access to it. So a natural problem is to explore the optimal monetary policy

contingent on price inflation. Now we assume that the only signal the central bank could

observe is the price inflation and the monetary policy is a feedback rule which vary interest

rates responding to the observed signal, the inflation.

4.1 Information structure and the timing

We first consider the case where the supply and demand shocks are i.i.d and uniformly

distributed on a support [Amin, Amax] and [Zmin, Zmax] respectively. Suppose the central bank

observes at time t the price level Pt, simultaneously with the choice of nominal interest rate

it. The output Yt cannot be observed in the current period but will be revealed next period.

This implies the information set It of the central bank at time t is given by

It = {Pt, it, Yt−1} ∪ It−1 (24)

where It−1 = {Pt−1, it−1, Yt−2, Pt−2, it−2, Yt−3 · · · } and I0 = {P0, i0, Y−1, P−1, i−1}.

Given this information set, the central bank could identify the supply and demand shocks

At−1, Zt−1 of the previous period, In order to focus our analysis on the implications of

policy making with partial information, we abstract from any information constraint faced

by private agents. They are assumed to have complete knowledge about the states of the

economy, including the realization of supply and demand shocks, consumption and wage

inflation. The justifications for this assumption are twofold, as pointed out by Aoki (2003):

on the one hand, consumption and wages are the choice variable of the private agents, which
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is based on the agents’ own preference and the firm’s production capacity. On the other

hand, consumption and production decisions of private sectors are not as dependent on the

availability of aggregate data as is the policy decision of the central bank.

To be precise, we assume the following time sequence. At the beginning of time t, the

output of the previous periods Yt−1 is revealed. Combining this with the information in It−1,

the central bank is able to identify the true value of past supply and demand shocks At−1

and Zt−1. Then the central bank announces its policy rule

it = R(Πp
t ) (25)

according to a policy function R : P → T . P and T denote the set of possible policy rate

and the price inflation observed, i.e. Πt ∈ P and it ∈ T . Once the supply and demand shock

At, Zt are realized, the economy arrivesits equilibrium.

Now the central bank cannot observe the fundamental shocks, At and Zt in real time,

but only infer the underlying state of the economy from the endogenous signal ΠP
t , taking

into account that the policy variable it maps into the endogenous signal ΠP
t through the

following reaction function

Πp
t = h(it, At, Zt) (26)

which is defined as an implicit function from Euler equation (16) and wage Phillips curve

(17):

AtZt
β(1 + it)E

=

√
At(At − Φ(AtΠ

p
t ))(Φ

′(AtΠ
p
t )Π

p
t − (1 + τ)(1− ϵ))

ϵχ
− βF (At − Φ(AtΠ

p
t ))

2

ϵχZt
(27)

The utility function can be expressed in terms of policy variables, endogenous signals and

fundamental shocks as:

U(it,Πp
t , At, Zt) = U(

AtZt
β(1 + it)E

,
AtZt

β(1 + it)(At − Φ(AtΠ
p
t ))E

;Zt) (28)
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The central bank’s optimization problem can be stated formally as:

max
R:P→T

E[U(it,Πp
t , At, Zt)] (29)

s.t. (25), (26)

Notice that, mathematically, the only difference with the FI-problem (18) is the presence of

constraint (25), which requires monetary policy to be a feedback rules which vary interest

rate responding to price inflation Πp
t .

4.2 Solution of optimal monetary under discretion

We denote the solution to the central bank’s optimization problem (41) as R∗. According

to Hauk et al.(2021), R∗ satisfies the following necessary optimality condition:

∫
A(Πp,R∗(Πp))

U∗
i + U∗

Πh
∗
i

|h∗Z |
fZ(Z∗(Πp, a))fA(a)da = 0 (30)

for almost all a ∈ [Amin, Amax]. Here A(Πp, i) denotes the support of [Amin, Amax] conditional

on observing Πp and i, i.e. A(Πp, i) = {a | Π = h(i, a, z) for some a ∈ [Amin, Amax] and z ∈

[Zmin, Zmax]}. U∗
i , U∗

Π, h
∗
i denote the functions evaluated at the optimal solution. Z∗(Πp, a)

is a function satisfying Πp = h(R∗(Πp),Z∗(Πp, a), a).

Note that the value of the expectation E and F interacts with the optimal policy rule.

To solve the model, we can apply the algorithm proposed in Hauk et al.(2021) with slight

modification:Given the optimal policy under full information, iFI(A,Z) = Z
β
− 1, one can

find the pairs (Πp, i) for all possible realizations of (A,Z).

Algorithm 1 Then follow the following steps:

(1) Discretize the set of possible values for Πp, which is [ 1
Amax

, 1
Amin

] in our model;

(2) Guess an initial value for E and F , denoted as E0 and F 0;

(3) Taking E = E0 and F = F 0, for each value Πp on the grid created in step 1, one can
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find the value i∗ that solves the non-linear equation

∫
A(Πp,i∗))

Ui(i∗, (Πp, a, z∗) + UΠ(i∗, (Πp, a, z∗)hi(i
∗, a, z∗)

|hZ(i∗, a, z∗)|
fZ(z

∗)fA(a)da = 0 (31)

where z∗ denote the value of z solving the equation Πp−h(i∗, a, z) = 0 at a given a. A(Πp, i∗))

is the set of realizations of A with positive density given a pair (Πp, i∗);

(4) Given the policy rule found in step 3, one can find the updated value for E and F ,

denoted as E ′ and F ′; If |E−E0| < ε and |F −F 0| < ε, where ε is the convergence criterion,

stop; If not, take E0 ← E ′, F 0 ← F ′ and go back to step (3).

5 Calibration

In order to solve the model numerically, it needs to be calibrated and we summarize the

parameter values in Table 1.

Preferences and Production The household’s discount factor β is set to 0.99, reflecting a

real interest rate of 3.3%. The elasticity of labor supply η takes value 1 and χ is chosen such

that value of leisure in the non-stochastic steady state equals to 30% of time endowment.

The demand shock Zt ranges from 0.99 to 1.1, so that the lowest optimal nominal rate is 0

and the highest around 10%. The supply shock At is assumed to fluctuate between ±10%

of the mean.

Labor Markets The elasticity of substitution among labor varieties ϵ is set to equal 4.5,

to be consistent with an average unemployment rate of 5% when labor is indivisible, in

line with Gaĺı(2011). Wage rigidity is captured by the convexity parameter ϕ and the

asymmetry parameter ψ in the adjustment cost function (10). ϕ is set to be 32, which can

be translated in a Calvo probability of not changing wages of 0.76 per quarter. We set ψ

equal to 1,077,970(Kim and Ruge-Murcia 2009).

15



Table 1: Parameters

value Target

discount factor β = 0.992 U.S. annual interest rate 3.3%
elasticity of labor supply η = 1

χ = 2 30% leisure time
supply shock At ∈ [0.9, 1.1] ±10% from 1
demand shock Zt ∈ [0.99, 1.1] iFI ∈ [0, 10%]
elasticity of substitution of labor ϵ = 4.5 natural unemployment rate 5%
Convexity in wage adj. cost function ϕ = 32 Calvo probability 0.76
Asymmetry in wage adj. cost function ψ = 1, 077, 970 Kim and Ruge-Murcia (2009)

6 Results

We now show the computational solution of the optimal policy under partial information

in the model of Section 4.

We plot the optimal policy under full information and partial information in the same

figure for comparison purpose. In Figure 4 the yellow region is the set of all equilibrium

pairs (Πp
t , it) that could have been realized under full information. The central bank adopt

strict wage inflation target under full information, so Πw
t = 1 always holds. Since the price

setting is flexible, the firm always set Pt =
Wt

At
. As a result, Πp

t ranges from At−1

Amax
to At−1

Amin
,

which means in equilibrium under full information, any price inflation(deflation) is purely

caused by supply shock and demand shock plays no role in it. Then for any given level of

price inflation, any level of demand shock could be realized, accompanied with the central

bank’s policy rate iFIt = Zt

β
− 1 to fully stabilize it. That is why the set of all equilibrium

pairs (Πp
t , it) consists of a rectangle.

As for the case of partial information, the red line plots the policy rate it against Πp
t

according to it = R∗(Πp
t ), computed using Algorithm 1. The intuition for the results is as

follows.

First, we can find that the policy rule is an increasing function of price inflation Πp
t , i.e.

R′(Πp) > 0. We know that the central bank should fully stabilize demand shock if it has full

information about the economy. But under the scenario of partial information, the central
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Figure 4: Optimal policy under FI and PI. Thick red line: R∗; yellow region: set of FI pairs
(Πp

t , it) for all possible realizations of (At, Zt); black dashed line: zero policy rate
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(a) Set of admissible supply shocks A(Πp
t ,R∗(Πp

t )))

(b) Set of admissible demand shocks Z(Πp
t ,R∗(Πp

t )))

Figure 5: Set of admissible fundamental shocks consistent with R∗
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bank can only infer it from the signal, Πp
t . Therefore, the responding rule of nominal rate

to price inflation is hinged on how the signal Pipt reveals about the demand shock Zt. From

the reaction function defined from Equation (27), one can get hZ > 0 by applying implicit

function theorem. The mechanism behind this can be explained by the Euler equation (11)

and the wage Phillips curve (15): higher demand shocks will boost aggregate consumption

and move the wage inflation upwards along the wage Phillips curve hence increase price

inflation. To stabilize the demand shock, R∗ should also be an increasing function of Πp
t .

Apart from being increasing, we see R∗ is non-linear: the higher the price inflation is, the

more forcefully the central bank will respond to it. We argue that how strongly the central

bank should respond to the price inflation is decided by two factors: the informativeness

of the signal and the effectiveness of the policy. The informativeness means how accurate

the price inflation signals the demand shock. The more confidence the central bank has on

the accuracy of the signal, the more determined it should respond to price inflation. The

effectiveness means how easily the changes of policy rate can affect the economy. The more

effective the policy rate is, the more cautious the central bank should move.

Figure (5) depicts the informativeness of the signal by showing the possible values of

shocks that are compatible with each given level of price information Πp
t and the policy

rule R∗. One can find that the set of the possible shocks that are compatible with a given

signal, A(Πp
t ,R∗(Πp

t ))) and Z(Πp
t ,R∗(Πp

t ))) are narrowed down when Πp
t moves towards its

two extreme values. For the lowest and highest observation of price inflation, there is full

revelation. The minimum value of Πp
t is only consistent with the lowest possible Zt and

highest possible At. Given R∗(Πp
t = 1

Amax
) = Zmin

β
− 1, any demand shock Zt > Zmin

will lead to Πw > 1 hence Πp
t >

1
Amax

, which is inconsistent with the signal. But when

Πp
t =

Πw
t

At
increases, the central bank is uncertain about the true cause of the price inflation,

an underact to the demand shock resulting higher Πw
t or lower supply shock At. That is why

we have more fundamental shocks that are compatible with the policy and the signal in the

intermediate region. As Πp
t gets high enough, the central bank becomes confident that wage
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inflation is happening and increase the policy rate sharply. When Πp
t arrives its maximum

1
Amin

, the central bank also raises the interest rate to the highest level Zmax

β
− 1. Conditional

on observing Πp
max, Zmax is the only possible realization of demand shock. Any Zt < Zmax

will lead us to observe a lower price inflation Πp
t .

Since the monetary policy aims to stabilize the demand shock, one can also interpret the

monetary policy as a “mixed stategy” to the possible demand shocks. If we plot the optimal

policy and the endogenous information set of demand shock, we can find that the nominal

rate is more or less a weighted average of the possible demand shocks, as is shown in Figure

6.

Figure 6: Optimal policy: a weighted average of possible demand shocks. The left y-axis
(blue) is the scale for demand shocks and the right y-axis (red) is the scale for nominal rates

The other factor affecting the slope of the policy function is the effectiveness. The

real effects of monetary policy is changing along the Phillips curve shown in Figure (3).

When the wage inflation is low, the wage Phillips curve is flatten, the monetary policy is

less transmitted as wage inflation and has a larger real effect on output. When the wage
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inflation is high, the wage Phillips curve is steep, the monetary policy is less effective and

more transmitted as wage inflation. The real effect of monetary policy is determined by

nominal wage rigidity. The higher the rigidity is, the more effective the monetary policy is.

Downward nominal wage rigidity bends the Phillips curve and makes the monetary policy

diminishing as wage inflation increases. So accordingly the central bank raises interest rate

slowly when the monetary policy is very powerful but raises it more quickly when its real

effect on aggregate demand is weak.

We can have a better understanding of the policy rule if we take both factors into account.

When observing low level of price inflation, the central bank could extract a good signal about

the demand shock Zt, but still raise the policy rate slowly because the monetary policy has

large real effects. In the intermediate region of Πp
t , the monetary policy is less powerful but

the central bank chooses to respond to price inflation mildly because it now faces much more

uncertainty. When Πp
t is high enough, the corresponding monetary policy rises sharply as

there is less uncertainty now and the monetary policy is not so effective as it is in the low

inflation regime.

7 Policy Comparison

In this section, we compare the optimal policy under partial information with some

alternative policy rules, a simple Taylor rule, “certainty equivalence” and a “standard recipe”

which can be seen as the expectation of the optimal policy rate under the probability measure

of exogenous shocks. We plot these policies in Figure 7.

A simple Taylor rule it = (Πp
t )
ω − 1 where ω = 1.5 captures how strongly the central

bank responds to the inflation. Compared with optimal policy, the Taylor rule overreacts to

price inflation and will lead to greater welfare loss as inflation gets higher.

The “standard” recipe,plotted in green line, can be seen as the expectation of the optimal
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policy rate under the measure of exogenous shocks

∫
(U∗

i + U∗
Πh

∗
i )fZ(z)fA(a)dzda = 0 (32)

One can find that its deviation from optimal policy becomes larger as inflation rate moves to

the two extremes, which is not surprising as the “standard” recipe fails to take into account

the endogeneity of the signal.

The certainty equivalence means that the central bank still adopts the function form the

optimal policy under full information but replace the realizations of fundamental shocks with

its best estimate, iCE = E[Zt]
β
− 1. One can find that the “certainty equivalence” prescribes

an almost linear policy rule, which will cause great distortions in the middle region.

Figure 7: Policy comparison. Thick red line: R∗; blue line: simple Taylor rule; dashed
line: ”Standard recipe”, which treats signals to be exogenous; yellow region: set of FI pairs
(Πp

t , it) for all possible realizations of (At, Zt); dotted line: zero policy rate
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7.1 The endogeneity of the signal

In this economy, the monetary policy aims for stabilizing demand shocks and can be seen

as a weighted average of the latter. On the other hand, price inflation, the signal observed by

the central bank is endogenous to the policy adopted, hence the set of possible of realizations

of fundamental shocks is shaped by the monetary policy. In Figure 8, we plot the possible

realizations of demand shocks that are consistent with the policy rules and the observations,

represented by green color bars. At each given level of price inflation observed (x-axis), the

height of the green bar represents the range of demand shocks could have been realized. The

higher (wider) the bar is, the greater uncertainty the central bank faces. When the signal is

taken as exogenous, policy choice has no effect on it and that is why we see a rectangle in

the middle panel. As for the optimal policy and “certainty equivalence” principal, they have

something in common: full revelation in extreme points, the signal of highest and lowest

price inflation. But in the intermediate level of price inflation, the degree of uncertainty

does not change much for the case of CE, in contrast to the case of optimal policy.

7.2 Welfare

To further evaluate different policy rules, we now compute the unconditional mean of

welfare for each policy rule (denoted as W ) and their percentage differences with the welfare

in an economy where the nominal rigidity is absent (denoted as Wflex), defined formerly as:

∆W = 100 · [exp(EWflex − EW )− 1] (33)

We can interpret this as a welfare loss from wage rigidity. The optimal policy under full

information achieves its first best and therefore has 0 welfare loss. Table (2) presents the

welfare loss for all the candidates policy rules under partial information. One can find that

the optimal policy rule performs much better than the alternative choices.
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(a) Set of admissible demand shocks Z(Πp
t ,R∗(Πp

t )))

(b) Set of admissible demand shocks with “standard Recipe”

(c) Set of admissible demand shocks with “Certainty Equiv-
alence”

Figure 8: Set of admissible demand shocks consistent with alternative policy rules
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Table 2: Welfare loss

Full Information Optimal Certainty Equivalence Taylor Rule Standard Recipe

0 0.16 0.28 0.34 0.45

8 Serial correlated shocks

In our main example, the supply and demand shocks are independent identically dis-

tributed. The assumption of i.i.d. process for the exogenous variables is made for simplicity

and illustrative purpose. To be consistent with empirical evidence, we solve the optimal

monetary policy with serial correlated fundamental shocks.

8.1 Optimal policy under full information

To be more precise, we now assume the supply shock At and demand shock Zt follow the

AR(1) process with non-stochastic means normalized to unity:

lnAt = ρa lnAt−1 + εa,t (34)

lnZt = ρz lnZt−1 + εz,t (35)

The autoregressive parameters, ρa and ρz, lie between zero and one. The innovations,

εa,t and εz,t are drawn from normal distributions of mean 0 and standard deviations σa and

σz.

Under rational expectations, one can find the dynamic IS curve and the new Keynessian

Phillips curve:

A1−ρa
t Z1−ρz

t

Ct
= β(1 + it)Et

exp(εz,t+1) exp(εa,t+1)

Ct+1Πw
t+1

(36)

ϵχZ1−ρz
t C2

t

[At − Φ(Πw
t )]

2
+
(1 + τ)(1− ϵ)AtZ1−ρz

t

At − Φ(Πw
t )

−Z
1−ρz
t Φ′(Πw

t )Π
w
t

At − Φ(Πw
t )

+βEt
exp(εz,t+1)Φ

′(Πw
t+1)Π

w
t+1

Aρat exp(εa,t+1)− Φ(Πw
t+1)

= 0

(37)
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The optimal policy under full information can be stated formerly as:

max
{it,Ct,Nt,Πw

t }
U(Ct, Nt;Zt) (38)

s.t. (14), (36), (37)

As shown in the appendix, the optimal policy sets Πw
t = 1 and it =

Z1−ρz
t

β
− 1.

8.2 Optimal policy under partial information

Note that the expectation part of the Phillips curve is not a constant any more but

depends on the supply shock At. We denote this part as F (At). The expectation part of

the IS curve is still a constant in equilibrium, which is denoted as G. Now one can find the

function mapping from the policy variable it to the signal Πp
t :

Πp
t = g(it, At, Zt) (39)

as an implicit function from:

Z1−ρz
t

β(1 + it)G
=

√
At(At − Φ(AtΠ

p
t ))(Φ

′(AtΠ
p
t )Π

p
t − (1 + τ)(1− ϵ))

ϵχ
− βF (At)(At − Φ(AtΠ

p
t ))

2

ϵχZ1−ρz
t

(40)

and the optimal policy problem under partial information can be stated as

max
R:P→T

E[U(it,Πp
t , At, Zt)] (41)

s.t. (25), (39)

The optimal policy rule R∗ satisfies the first-order condition:

∫ +∞

−∞

U∗
i + U∗

Πg
∗
i

|g∗Z |
fZ(Z∗(Πp, a))fA(a)da = 0 (42)
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To solve out the optimal policy, we use a linear function to approximate the expectation

part in (40), i.e. F (At) ≈ F1 lnAt + F2 and then apply the following algorithm:

Algorithm 2 Given the optimal policy under full information, iFI(A,Z) = Z1−ρz

β
− 1, one

can find the pairs (Πp, i) for all possible realizations of (A,Z). Since now we have unbounded

shocks At and Zt, the pairs (Πp, i) fill the whole R2 space. Then follow the following steps:

(1) Discretize the set of possible values for Πp. Here we choose to discretize the interval

A = [exp((1− ρa)at−1 − 3σa), exp((1− ρa)at−1 + 3σa)];

(2) Guess an initial value for G and F1, F2, denoted as G0 and F 0
1 , F

0
2 ;

(3) Taking G = G0 and F1 = F 0
1 , F2 = F 0

2 , for each value Πp on the grid created in step 1,

one can find the value i∗ that solves the non-linear equation

∫
A

Ui(i∗,Πp, a, z∗) + UΠ(i∗,Πp, a, z∗)gi(i
∗, a, z∗)

|gZ(i∗, a, z∗)|
fZ(z

∗)fA(a)da = 0 (43)

where z∗ denote the value of z solving the equation Πp − g(i∗, a, z) = 0 at a given a;

(4) Given the policy rule found in step 3, one can find the updated value for G and F1, F2,

denoted as G′ and F ′
1, F

′
2; If |G − G0| < ε and |F1 − F 0

1 | < ε, |F2 − F 0
2 | < ε, where ε is the

convergence criterion, stop; If not, take G0 ← G′, F 0
1 ← F ′

1, F
0
2 ← F ′

2 and go back to step

(3).

8.3 Results

Now we show the computational solution of optimal policy under partial information

when the shocks are serial correlated in Figure 9. The yellow region represents the set of

all equilibrium pairs (Πp
t , it) that could have been realized under full information as before.

Recalling that all equilibrium pairs (Πp
t , it) consist of a rectangle when shocks are uniformly

distributed. But this is not the case when we have serial correlated shocks. Now the equilib-

rium pairs (Πp
t , it) fill the whole R2 space. For convenience, we plot the area when εa,t and

εz,t falls within 3 standard deviations of their mean 0.
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Figure 9: Optimal policy under FI and PI. Thick red line: R∗; yellow region: set of FI pairs
(Πp

t , it) for all possible realizations of (At, Zt); black dashed line: zero policy rate

One can find that the optimal policy rate is still an increasing function of price inflation

as before. This is because higher price inflation signals higher demand shock unambiguously

as the i.i.d. case and the monetary policy aims for stabilizing the demand shock. The

non-linearity of the policy rule can also be attributed to the changing nominal rigidity and

uncertainty along the Phillips curve and lead inertial behavior responding to low inflation

and strong reaction to high inflation.

9 Conclusion

This paper explicitly analyzes the optimal monetary policy with signal extraction in a

non-linear model with asymmetric wage adjustment cost. We find that the asymmetric wage

adjustment cost and the signal endogeneity are the two forces shaping the responsiveness of

policy rate to price inflation. The asymmetric wage adjustment cost changes the effectiveness

of the monetary policy along the Phillips curve via changing the nominal rigidity. The signal
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endogeneity changes the central banks certainty level about the economy as the price inflation

varies. These two factors make the monetary policy exhibits non-linear behavior.
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